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ABSTRACT

In this paper introduces a new idea for fixed point of nonexpansive mapping using Noor iterative schemes and we prove
fixed point theorems for weakly convergence of sequence in Banach space which satisfies Opial's condition MSC :47H09,47H10
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Let E be a closed bounded convex subset of a
Banach space X and T: E—5E be amapping. Then T is known
as nonexpansive if.
ITC-TWI Ix-yll vx,y€E. (1.

Let F(T)= {x E:T(x)=x},then F(T)is called the
set of fixed points of mapping T. If E is a closed and convex
subset of a Hilbert space H and T has a fixed point, then for

every x € E, {T,(x)}is weakly almost convergent to a fixed

point of T, as n—oc. This theorem is called the first ergodic
theorem which was proved by Baillon (1975) for general
nonexpansive mappings in Hilbert space H.

Diaz and Metcalf (1969) studied quasi-
nonexpansive mapping in Banach space. This type of work
was also given by some Mathematician Awasthy and Shukla
(2008); Ghosh and Debnath (1997), Kirk (1997); Opial
(1967), Owojori and Olessegun (2006); Pazy (1977),
Rhoades and Temir (2006); Shahzad (2004), Xu and Noor
(2007) and Zhou et al.(2002). Recently, this concept was
given by Kirk (1997) in metric spaces which we adapt to a
normed spaces. The mapping T is known as quasi-
nonexpansive mapping if
ITx- A< -1]
forallx € Eand f €F(T).

Preliminaries and Definitions

(1.2)

Let X be a Banach space and T: E—>E be a mapping

of a convex subset of X. Let x, € E. A sequence {x,}is
obtainedbyx,.,=(1-a,)x,+a, Ty,
With y":(l_Bn)XnJ’_BnTZn

'Corresponding author

Zn:(l _Y11)Xn+yl1TXn nZl (2'1)

and with {o,}, {B,} and {y,} satisfying following conditions
) 0<a,<p,<y,<1

@ fimp, =0, fmv.=0 (22)

(iif) D Buy, =
n=1

The iterates given in (2.1) with (2.2) are known as Noor

iteration. Noor iteration can be written as follows:

Xy = (1-0) X, 0, TI(T-B ) X, B, T{(1-v,) X+, Tx ;] (2.3)

where {a,}, {B,} and {y,}are sequences in (0,1)
A Banach space X is said to satisfy Opial's condition

Noor (2000) if for each sequence {x,}in X such that x,—»x

implies that

fim|x, — x| < fim
fim

n—oo

X, =Y

forally € xwithy #x.

In this paper, we consider that T is a nonexpansive
mapping in the Banach space X. Then we will show the
weak convergence of the sequence of Noor iterates to a

fixed point of T.

RESULTS
Theorem: 3.1

The E be closed convex bounded subset of
uniformly convex Banach space X which satisfies Opial's
condition. Let T be a self mapping of E and T is a
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nonexpansive mapping on E. Then for x, € E, the sequence
{x,}of Noor iterates converges weakly to fixed point of F(T).
Proof

If (F(T) is nonempty and a singleton then the proof
is complete. Let us consider that F(T) is nonempty and F(T)

isnotasingleton. Then

1%, - 1]

=[I(1-0u,)x,+ou, TI(1-B)x,+B, T{(1-y,)x,+y,Tx, } ]-(1-0, o) ]
=[I(1 -a,) (x,-D)+ar, [T [(1-B,)x,+B, T{(1-v,) x,+y,Tx,} ] - ][
<N(-04) (x,-0) 1+ [lox, [TL(T- B) x, 4B, T{(T-y,)x, v, Tx, - £|
<(I-a )| (x,-Dl[For, [ITLCL- B)x, B, T{(1-v.) x4y Tx, - ]
<(1-ou)lIx,A[+ o, ITI(1-B,) X, B, T(1-y,)%,+,Tx,} ]-(1-y, )1l
<(1-ou)lIx,Al+ou [(1-B)x, B, T{(1-y, )%y, Tx, 1 -(1-y,) f+y, ]
<(1-00) [[x,-l|+ o, [[(1-B,) (x,-0) +B, T {(1-y,)x, +1,Tx,} - 1. 1]
<(1-au,) [Ix,-fll +ou  [|(1-B,) (x,-D 4B, {(1-) X, + 7, Tx, - 1. f]
<(1-a)Ix,-f[Fou (1B, DB, {(1-y)x, 9, TX, }-(1-v,+,) ]
<(L-ou,)l[x, A+, [|(1-B) (%, B (1-y,)(x,-) 8,7, Tx, -B,v.fl|
<(L-ou)l[x, A+ e [[(1-B),-HF B, (1-1,) (x,-D) +B.7.X, - By 1]
<(I-a,) [Ix,~fl| +ou, [I(1-B,) (x,-D +B, (1-v,) (x,-D) + By, (x,- D]
<(I-a,) [Ix,fl[+ e, [Ix, -]

=|x,fll

1%, -1 < [1x,-A]]

where {o,}, {B,} and {y,} are sequencesin (0,1)

Hence for a,#0,B,#0,7,#0{||x,-f]|}is a non
increasing sequence. Then }gg || x,- ]| exists.

Now we show that {x,} converges to a fixed point
of T. The sequence {x,} contains a subsequence which
converges weakly toapointin E. Let {X n, } and {ka }
be two subsequences of {x,} which converges weakly to f

and q respectively. We will show that f=q.
Suppose that X satisfies Opial's condition and that

f #qisinaweak limit set of the sequence

{Xn} Then {X 1, } — fand {ka } — q respectively.
Since lim || x,- f]| exist for any f e F(T).

By Opial's condition, we conclude that

lgg Il xo- Il = lgg | Xn, -flI< lgg I X5, -dl

= lim x,- glf = lim || X,, - g

130

< lim | Xy - f)= lm | xf]

o
which is a contradiction. Hence {x,}converges weakly to
an element of F(T).
Theorem: 3.2

Let E be a closed convex bounded subset of
uniformly convex Banach space X, which satisfies Opial's
condition. Let T be a self mapping of E and T is a quasi-
nonexpansive mapping on E. Then for x, € E, the sequence
{x,} of Noor iterates converges weakly to fixed point of F(T).
Proof

Since every nonexpansive mapping is a quasi-
nonexpansive mapping. Proof of this theorem is similar to

above theorem.
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